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Mission lifecycles have proven to extend well beyond their original design. The benefits to 
this are countless but introduce challenges in today’s rapidly changing ground 
infrastructure and software technologies used to enable mission success. What remains 
constant is the risk posture missions maintain when accepting change and the use of new 
technologies. Larger missions are ready for change in early lifecycle development but near 
launch and especially in operations, few continue to evolve beyond what is set in place in 
phase C.  

This paper will discuss how the Advance Multi-Mission Operations System (AMMOS) 
intends to address, three driving missions concerns: Maintaining functionality 
(hardware/software) for decades, rapidly responding to security vulnerabilities in software, 
and finally the ability to quickly evolve infrastructure and software changes.  

These driving concerns are briefly described below: 

1. Maintaining functionality (hardware/software) for decades 

Hardware updates considerably faster than 10 years ago. Expectations that a system can 
remain in place for more than 10 years is no longer valid. Expecting to find hardware 
replacements for a system older than 5 years will increasingly become more and more 
challenging. How than do missions plan for hardware changes for long lived missions? 

Principle Objective:  Provide abstraction by virtualizing and containerizing software 
abstract away any hardware dependencies and package up the application lightweight units. 

2. Rapidly responding to security vulnerabilities in software  

Cost is often the main impediment and largely driven by the revalidation and testing of 
system that undergo change. In todays, environment security updates are a major diver 
demanding systems remain up to date.   How then do missions accept these changes and 
avoid large testing efforts? 

Principle Objective: Help reduce the cost of re-testing by automation of testing, 
deployment, and compartmentalizing change. 
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3. Ability to quickly evolve infrastructure and software changes 

Responding quickly to change is similar to the second concern in this paper regarding 
security vulnerabilities. In this case, it address broader concerns of updating software and 
infrastructure on a more realistic timeline.  How do missions stay up to date with the most 
recent versions of software and allowing for improved functionality?  

Principle Objective:  Use continuous integration techniques at the system level to ensure 
rapid turnaround. 

This paper explores each of these concerns in more detail. It focuses the AMMOS’s 
current plans, challenges and current roadmap.   

I. Introduction 
HIS paper discusses modern approaches to address mission system longevity. Gone are the days when mission 
operation systems can remain stagnate. Ninety-day missions turn into ten-year missions, yet planning for 

change is often handled ad hoc. Computer hardware changes faster than ever, software seemingly requires patches 
every month, closed and walled off systems are considerably more exposed.  The legacy approach to system 
maintenance, “build and do not touch,” is no longer tenable.  
 
 Designing for extended “extended” missions needs to become the norm. To do this it is important to ensure the 
appropriate level of system maintenance in terms of budget and schedule is planned. Maintenance planning is 
needed to support updating system hardware and software as well as to support the testing required for these 
changes (See AIAA SpaceOps 2016 paper: Hidden Costs of Unsupported Software, Obsolescence and Non-
Standards; The Importance and Value of a Multi-Mission Software Program1). Acknowledging the cost of 
maintenance for the entire lifecycle of the mission, including planning and staffing support, will allow this same 
support to continue in extended mission.  
 

II.  Primer – Containerization and Continuous Integration 
This section is intended to provide just enough information to understand the technologies and concepts used 

throughout the paper. It briefly describes containerization, continuous integration, and the technology benefits for 
mission system development and deployment. 

A. Containerization – What is it and why does it matter? 
 

 Without getting into too much detail, let us briefly discuss what a container is. A container is a stand-alone, 
executable image bundling software (an application) and everything needed for it to run. This includes runtime 
executables, required system tools (3rd party), required libraries, and configuration settings. The work described in 
this paper is based on the Docker2 container.     
 
  Container technology brings numerous benefits to a mission system as outlined in Table 1.  
 

Attribute  Mission System Benefits 

1. Portable deployments  Containers run on multiple platforms (Windows, MacOS, Linux, 

                                                           
2 Docker, “What is Docker” [online reference], URL: https://www.docker.com/what-docker 
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Cloud) allowing for bundling and deployment of mission system 
applications. 

2. Application-centric  Containers deploy and deliver applications enabling system 
teams to focus on mission operations capabilities. Discrete 
bundles tease apart complex dependencies. 

3. Support for automatic container builds   Enables process automation: code change, automatic build and 
unit test, system deployment and automatic system test. 

4. Discrete self-sufficient bundles   Simplifies adoption. 
 Simplifies deployment. 
 Supports maintaining functionality by removing hardware 

infrastructure and environment dependencies. 
 

Table 1. Containerized software mission system benefits 

B. Continuous Integration – What is it and why does it matter? 
 
Continuous Integration (CI) is a derivative of agile software development practices in which developers 

continually check in code for a nightly build process.  Builds are regularly run against automated regression testing 
and integration problems addressed very frequently.  This has proven successful for application development. This 
paper takes the concept of continuous integration for application development and extends it to include system 
integration.  

 
The benefits continuous integration bring to a mission system are enumerated in Table 2. 
 

Attribute  Mission System Benefits 

2. Reduces risk of integration  Frequent integration facilitates planning and scheduling.   
3. System and 3rd party patching - smoke 

testing  
 Determines if system and third party patches break the 

system.  

5. Support smaller team (Integration / Test / 
Deployment) 

 Stay on top of needed updates avoiding obsolescence and 
security vulnerabilities even with a small staff. 

 
Table 2. Continuous integration mission system benefits 

C. Important Technologies  
 
Docker and a Continuous Integration process require support technologies to enable a structured workflow and 

automation. This section highlights the important technologies AMMOS is using in along with references.  
 

Technology Reference 
Artifactory3  A development tool that supports binary management, works with different 

software package management systems, and easily integrates into a continuous 
integration workflow. 

YUM – Yellowdog Updater 
Modified4 

A package installer/remover used for Redhat Package Managed systems.   

Jenkins5  An open source automation server that supports building, deploying and 
automating development projects. 

                                                           
3 Artifactory, “JFrog Artifactory Enterprise Universal Artifact Manager ” [Vendor Website], URL: 
https://jfrog.com/artifactory/ 
4 YUM, “Yellowdog Updater Modified” [Open Source Collaboration Website], URL: http://yum.baseurl.org/ 
5 Jenkins, “Open source automation server” [Website], URL: https://jenkins.io/ 



 
American Institute of Aeronautics and Astronautics 

 

 

4

Software Repositories AMMOS software repositories used: 
 
GIT / GITHUB  
SVN 
CVS 

Table 3. Important technology references 
 

III. Extending the Lifetime of Functionality 
 
Gone are the days when systems can remain untouched and expected to remain in a working state year after year.  

Hardware fails and exact match replacements are more difficult to come by as infrastructure changes each year. 
Software ages more quickly with changes in operating systems and updates in 3rd party dependencies. These 
dependencies can dictate mandatory change due to security vulnerabilities.  The section discusses several 
approaches that capitalize on containerization technology in order to lengthen the lifespan of software functionality.  
The ability to run anywhere increases application lifespan. In order to do this you need to isolate applications, 
understand system dependencies, and ensure that best efforts are made to make applications host agnostic.  

A. Application Isolation 
 
A Docker container uses abstraction to isolate software. The runtime environment is consistent on multiple 

platforms. Multiple environments can run and remain isolated on a single machine.  Docker containers run on Linux 
distributions, Windows, VMs, bare-metal and in the cloud. Based on open standards there is an ever-increasing open 
source community contributing and maintain Docker containers. Dockerizing an application allows for a great 
degree of portability and possibly an increase in lifespan. There are never guarantees but if Docker container 
technology stays in vogue, it can prolong the life of the application.   

Docker containers isolate applications from other applications as well as the infrastructure. If done correctly, this 
strong isolation tightens security. This allows older applications to run in sandboxed configurations. If a mission 
cannot update the application, at least it is possible to wall it off.  

B. System Dependencies – Understanding Application Updates 
 

Docker images give you complete control over the contents. It may not seem obvious but understanding all your 
application dependencies and having a way to control the contents of a container can support application 
maintenance.  To the largest extent possible, breaking the system into compartmentalized objects allows for planned 
change. Applications that can be will be regularly updated. Applications that have less support can be isolated.  
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Fig 1. Application Templates and supporting infrastructure 

 
Figure 1. Illustrates the use of a version-controlled template defining applications content, version controlled 3rd 

party and operating system packages, version controlled system cores and patches, and finally repositories for the 
resulting builds.  

C. Agnostic Containers – Portable Deployments  
 

Applications are often developed with dependencies tied to a machine’s specific configuration: networking, 
storage, logging, etc. A Docker container allows for bundling of an application and all its dependencies into a single 
object. In addition, Docker supports abstraction for machine-specific settings. When this abstraction is used, 
containers can run - unchanged - on many different machines, with different configurations. 

IV. Reducing the Cost of Testing and Deployment 
There is no changing the fact that budgets in operational phases of a mission will decline. Once a mission is 

extended, budgets are reduced even more. This section defines an approach that uses continuous integration to 
enable more frequent testing in operations with smaller integration and test teams.   

The workflow is as follows: patch, build application, test application, system integration, system test and report.  
Patching is covered in more detail later in section V.  

A. Application Build and Test  
 
Continuous integration must provide rapid feedback to developers, system integrators and users. However, to do 

this you need to establish a fast and efficient process. Automation pipelines are used that build, test and report 
results. For the best results, the test environment should mimic the production environment. Using Docker 
containers in the test and operations venues yields the best results. Containerizing 3rd party components like database 
software, and operating system patches are included in the containers or built as microservices used by applications 
deployed in containers (See Fig 1.).  
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Fig 2. Application Image Build Workflow 

 
Figure 2. Illustrates how the pipeline builds applications using controlled templates. Templates are stored in an 

accessible repository and can be used in other workflows. The test pipeline uses a suite of automated tests able to 
check a large part of the code base for bugs. The tests are kicked off from a simple command and integrated into the 
pipeline. The result of running the test suite indicate pass and failed conditions. Failure of a test is reported and the 
resulting application is removed from system test (see Fig 3.). 
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Fig 3. Application Image Test Workflow 

A. Automating System Test 
 
The application CI approach defined in the previous section improves testing of a mission system. AMMOS 

development teams are expected to use CI. These applications are tested in the context of a deployed mission 
operation system. Extending CI at the system level allows missions to take advantage of detailed unit testing 
provided by the applications. System testing adds: system interface testing, and system specific non-functional and 
end-to-end testing.   

 
Figure 4. Illustrates how system testing can rapidly verify key system interfaces. Automating system interface 

testing allows individual applications to change without the need to perform a complete system test cycle.   
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Fig 4. Automated System Interface Test Workflow 
 
System tests are often non-functional in nature dealing with performance, throughput and security, but can also 

include end-to-end tests e.g. the production of mission products involving multiple applications.  
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Fig 5. Automated System Test Workflow 

 
It is possible to use a configurable combination of automated tests or simply verify the update of a single 

application running in as part of the system. To test a single application the workflow need only include the 
applications system interface test and end-to-end tests required to ensure functionality meets requirements. 
Application deployment  is automated, the test cases are automated and gone is the need for three months of manual 
and comprehensive system testing.  

V. Responding to Rapid Change – Operating System and Software Patching 
 
Section IV discussed how a mission could use system interface and end-to-end automated tests to verify updates. 

This section goes into detail regarding changes to the operating system and 3rd party software. Automation can 
reduce the effort required to determine if operating systems and support software break mission system 
functionality. For a small change, a traditional system test cycle is not needed. By using the application and system 
pipelines, we allow the mission to selectively compose levels of test. Application failing test after an update need 
only be rolled back. Additionally, rolling back to older versions of working states is also automatable. 
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Fig 6. Controlled Operating System Updates 

 
Integrating CI pipelines into each application build allows the system to build container updates without an 

entire application development lifecycle. Application automated tests generate success criteria and feed the system 
interface and end-to-end testing.  Application need not update functionality just be retested at the system level with 
patches.  Important security patches can be integrated into the system without perturbing application development 
cycles.  

VI. Conclusion 
 
Designing for extended “extended” missions needs to become the norm. The process depends on ensuring the 

appropriate level of system maintenance planning. Modularizing using containers and instituting automation allow 
for smaller teams. The process for build, test, deploy, integrate and test again should using CI early in mission life 
cycles then become established and considered the norm in operations phase.  

 

Acronyms and Abbreviations 
 
CI   Continuous Integration  
MGSS       Multimission Ground System and Services 
OS   Operating System 
RPM  Redhat Package Manager 
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